
pubs.acs.org/JAFCPublished on Web 10/06/2009© 2009 American Chemical Society

J. Agric. Food Chem. 2009, 57, 9365–9369 9365

DOI:10.1021/jf901763n

Rapid Evaluation of Oxidized Fatty Acid Concentration in
Virgin Olive Oils Using Metal Oxide Semiconductor Sensors

and Multiple Linear Regression
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This works aims to set up a rapid and nondestructive method to evaluate the advanced oxidation of

virgin olive oils (VOOs). An electronic nose based on an array of six metal oxide semiconductor sensors

was used, jointly with multiple linear regression (MLR), to predict the oxidized fatty acid (OFA)

concentration in VOO samples characterized by different oxidative status. An MLR model constructed

using five predictors was able to predict OFA concentration with an average validation error of 9%.
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INTRODUCTION

Differently from other foods, oils and fats do not suffer
microbiological problems during storage but suffer principally
the oxidation process. The oxidation process is normally divided
into three phases: primary phase (slow increase of oxidation);
secondary phase (rapid propagation of oxidation), and termina-
tion phase. Each oxidation phase is characterized by the pro-
duction of specific oxidized products (1, 2), such as volatile
compounds, oxidized polymers, and molecules that have a
similar parent structure with respect to the starting molecules
[i.e., oxidized fatty acids (OFA)] (3).

Virgin olive oils (VOOs) are characterized by a high oxidative
stability with respect to other edible oils in terms of their fatty acid
composition (a high oleic acid concentration) and antioxidant
content (4). The formation of oxidation products during oxida-
tion reactions depends on the fatty acid composition of oils and
on antioxidant (phenolic compounds, tocopherols, carotenoids)
and pro-oxidant factors (i.e., the presence of oxygen and metals,
temperature, and light) (5, 6).

The evaluation of secondary oxidation products represents a
critical point to evaluate the storage status of fatty substances (5).
The difficulty in determining these compounds is due to the fact
that each fatty acid produces first hydroperoxides, followed by
the production of different classes of compounds such as alco-
hols, ketones, and epoxides in various isomeric forms.

Several approaches have been attempted to find a reliable oxi-
dation index that, combinedwith evaluation of primary oxidation
products, would provide a realistic idea about the oxidation
status of the fatty matrix (7). The secondary oxidation indices

more widely applied to fat and vegetable oils are the p-anisidine
value and thiobarbituric acid reactive substances as well as the
content of hexanal or nonanal or their ratio (8, 9). Among the
chemical methods, the measurements of total polar compounds
and polymerized triglycerides (in particular in oils subjected to
heating) are the most common methods used (10) for the assess-
ment of oil quality. In fact, the oxidized triglyceride and their
polymers are good indicators of the oxidative level of oils and fats
due to their high stability and low volatility. Nowadays, the
official method used to measure the oxidation index entails
gravimetric analysis of the polar products according to ISO
8420 (11).

An alternative method to analyze secondary oxidation pro-
ducts has been proposed by Rovellini, Cortesi, and Fedeli (12).
This method evaluates the oxidation status of VOOs using RP-
HPLC analysis of OFAs and permits reliable quantification
thanks to the use of two reference standards. The method has
been used to evaluate the oxidative status of VOOs in various
areas of applied research (2, 13, 14).

This HPLC method (12, 14) allows the identification and
quantification of the main OFAs (hydroxy, keto, epoxy, and
epidioxy) after a simple derivatization step with sodium benzyl
oxide of the triglycerides. As these latter compounds are more
stable than peroxides, OFAs seem to be a good index of oxidative
changes in lipids. The disadvantages of this method include
the long sample preparation time and the long HPLC analysis
time (approximately 80 min). For this reason, other techniques
that minimize these disadvantages and offer potentially rapid
methods that can screen large numbers of samples are needed.

Metal oxide semiconductor (MOS) sensors have been shown to
be valid instruments that are applicable in many fields of food
control; these sensors have a low cost and can work online
without sample pretreatment (15,16). Electronic noses have been
used to detect a variety of sensory defects in VOOs (17-21) and

*Corresponding authors [(M.J.L.-G.) telephone þ34963544334,
fax þ34963544436, e-mail m.jesus.lerma@uv.es; (L.C.) telephone
þ390547338121, fax þ390547382348, e-mail lorenzo.cerretani@
unibo.it].



9366 J. Agric. Food Chem., Vol. 57, No. 20, 2009 Lerma-Garcı́a et al.

to authenticate themaccording to the varietal or geographical origin
of olives (22). In this regard, the oxidation level of VOO has been
recently studied (21,23,24). As far as we are aware, no research has
been carried out using MOS sensors coupled with multiple linear
regression (MLR) to predict OFA concentration in VOOs.

In this work, an electronic nose based on an array of six MOS
was used jointly with the application of MLR models to predict
OFA concentration in VOOs characterized by different oxidative
status. For this purpose, sensor signals were used as predictors.

MATERIALS AND METHODS

Reagents and Samples. The following reagents and standards were
used: tricaproin, triheptadecanoin, sodium benzyl oxide in benzyl alcohol,
n-hexane, 2-propanol, acetone (Sigma-Aldrich, St. Louis, MO), acetoni-
trile (ACN), anhydrous sodium sulfate (Merck, Darmstadt, Germany),
and acetic acid (Fluka, Buchs, Switzerland).

A series of 72 VOOs were sampled from different Italian regions
(Abruzzo, Emilia-Romagna, Puglia, Sicilia, and Toscana) during the
harvest seasons 2006-2007, 2007-2008, and 2008-2009. All samples
were analyzed between November 2008 and January 2009. The oils
differed in terms of olive cultivar, degree of ripening, area of growth,
production system (type, productive capacity, and manufacturer), and
storage time.

Instrumentation and Working Conditions. An electronic olfactory
system (EOS 507, Sacmi Imola S.C., Imola, Bologna, Italy) composed of a
measuring chamber with six metal oxide sensors and a personal computer
was used for the acquisition and analysis of the data generated by the EOS
507. The sensors used were as follows: sensor 1 (SnO2); sensor 2 (SnO2 þ
SiO2); sensors 3, 4, and 5 (catalyzed SnO2 with three different metals); and
sensor 6 (WO3). During the analysis, sensors were maintained at a
temperature range of 350-450 �C. The EOS 507 was controlled by an
integrated personal digital assistant equipped with proprietary software
andwas connected to an automatic sampling apparatus (model HT500H),
which had a carousel of 10 sites for loading samples. Samples were kept at
controlled temperature (37 �C) and placed in a chamber provided by a
system that removes humidity from the surrounding environment.

OFA determination was performed using an 1100 series liquid chro-
matograph (Agilent Technologies, Palo Alto, CA) provided with a binary
pump delivery system, a degasser, an autosampler, and a diode array
UV-Vis detector (DAD). The liquid chromatograph was also coupled (in
series with the DAD) to an atmospheric pressure chemical ionization
source from an HP 1100 series quadrupole mass analyzer (MS) (Agilent).
OFA separationwas carried out with a LunaC18 column (5 μm, 250� 4.6
mm i.d., Phenomenex, Torrance, CA). Mobile phases were prepared by
mixingACN (A) andwater (B) in gradientmode. The gradient elutionwas
performed as follows: from 0 to 50 min, the A percentage was increased
from60 to 100%; an isocratic elution at 100%Awas carried out from50 to
70 min; an additional minute was used to decrease the A percentage from
100 to 60%; then, 60% A was maintained an additional 14 min to
equilibrate the column. UV-Vis detection was performed at 255 ( 10
nm (reference 500( 50nm). In all cases, 20μLwas injected at a flow rate of
1 mL min-1. These conditions were adapted from the NGD C-88 official
method published by Norme Grassi e Derivati (25). The MS working
conditions were as follows: nebulizer gas pressure, 50 psi; drying gas flow,
9 L min-1 at 350 �C; vaporizer temperature, 300 �C; capillary voltage,
3 kV; corona current, 4μA; and fragmentor voltage, 60V.Themass spectro-
meter was scanned within them/z 300-500 range in the positive-ion mode.

MOS Sensor Array Procedure. For each sample, 15 g was placed in
a 100mLPyrex vial equippedwith a pierceable silicon/Teflon cap.Figure 1
represents the response of the six sensors for one of the samples employed
in this study. For each sensor, the signal is divided in four parts: (A)
conditioning phase (25 min period employed to obtain a constant base-
line), (B) before injection phase (in which samples were incubated at 37 �C
for 7 min before injection), (C) measurement cycle (in which the oil
headspace, sampled with an automatic syringe, was then pumped over the
sensor surfaces for 2min during which the sensor signals were recorded; in
this phase sensors were exposed to filtered air at a constant flow rate of 50
sccm (standard cubic cmpermin) to obtain the baseline), and (D) recovery
phase (another 7 min period applied to restore the original MOS
conditions). Ambient air filtered with activated silica and charcoal was

usedas a reference gas during the recoveryphase of themeasurement cycle.
The previous conditions ensured that the baseline reading had indeed been
recovered before the next analysis was performed.

The experimental conditions adapted from Camurati et al. (18) were
used, and each sample was evaluated in duplicate.

Determination of OFAs. OFAs were prepared according to the
literature (14, 25), and analyzed by HPLC-DAD (25) and HPLC-MS
after transesterification with 1.0M sodium benzyl oxide in benzyl alcohol.
Tricaproin and triheptadecanoin were used as internal standards (results
are reported in percentages as g of total OFA expressed as benzyl
heptadecanoate per 100 g of oil, whereas benzyl caproate was used as a
control for the derivatization reaction).

Data Treatment and Construction of MLR Matrices. The data
from the electronic nose were extracted and analyzed with the statistical
package “Nose Pattern Editor” (Sacmi Imola S.C.). A feature extraction
algorithm called “classical feature” was applied to the data before other
statistical treatments. The response extracted by each sensorwas definedby

X ¼ p1=p0

where p0 was the initial resistance of the sensor balanced in the air (see
Figure 1), p1 was the resistance (see Figure 1) of a sensor in the presence of
the volatile compounds emitted from the VOO headspace (which de-
creased respect to p0), and X was the response of each sensor recorded.

For MLR studies, calibration and external validation sets were con-
structed. The calibration matrix contained 60 objects (which were ran-
domly selected), which corresponded to the average of the duplicates for
each sample. The signal of the 6 sensors, which were used as predictors,
was also added to this matrix. The external validation matrix was
constructed with the remaining 12 objects also corresponding to the
average of the duplicates of the samples. Also in this case, the signal of
the 6 sensors was added to this matrix. A response column, containing the
OFA concentration (obtained by HPLC), was then added to these
matrices. Statistical analyses were performed using SPSS (v. 11.5, Statis-
tical Package for the Social Sciences, Chicago, IL).

Figure 1. Plots representing the electrical resistance (Ω) of each MOS
sensor during VOOevaluation: (A) conditioning phase; (B) before injection
phase; (C) measurement cycle; (D) recovery phase.
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RESULTS AND DISCUSSION

OFA Content in VOO Samples. The HPLC chromatograms in
Figure 2 show that the differences in OFA content (low, medium,
and high) of three VOO samples are related to storage time
(2 weeks, 16 months, and 34 months after oil production, which
correspond to partsA,B, andC, respectively). On the basis of the
study of MS spectra, three groups of OFAs were identified (see
Figure 2): 1, for isomeric forms of ketolinolenic acid (m/z 383); 2,
for isomeric forms of ketolinoleic acid (m/z 385); and 3, for
isomeric forms of keto-oleic acid (m/z 387). All m/z values
corresponded to the [M þ H]þ ions.

The OFA content was evaluated for the 72 VOO samples and
was found to have a wide range, which varied from 0.3 to 6.5%.
This can be attributed to the fact that the oil samples came from
different harvest seasons andwere analyzed at times ranging from
1 week to 36 months after production. Rovellini et al. (14)
analyzed several VOOs and found that OFA percentages from
2 to 4% are typical for extra virgin olive oils stored from 2 to 18
months at room temperature, whereas oil samples characterized
by a total OFA of >4% must be considered as “expired”.

Taking into account the differences observed in OFA values,
samples were grouped in four groups (Figure 3) on the basis of the
OFA values (OFA<1.0% for Figure 3A; 1.0%eOFA< 2.5%
forFigure 3B; 2.5%eOFA<4%forFigure 3C; andOFAg 4%
for Figure 3D). The 72 VOOs were subdivided as follows: a first
group (G1, n = 23) with a mean of 0.6%; a second group (G2,
n= 15) with a mean of 1.8%; a third group (G3, n= 23) with a
mean of 3.0%; and a fourth group (G4, n = 11) with a mean of
5.3%.All of the samples producedwithin 1month before analysis
belonged to G1 with a very narrow range of OFA values (from
0.3 to 0.8%). In contrast, group G4 showed higher percentages
and a wider range of variability (from 4.2 to 6.5%). These data
confirm that it is possible to evaluate the freshness ofVOOswith a
simple OFA assay, thereby reducing the number of analyses
(i.e., peroxide values or k232 for primary oxidation products and
p-anisidine value or volatile content for secondary oxidation
products).

Construction of MLRModels. The SPSS stepwise algorithm of
the SPSS was used to select the variables to be included in the

MLR models. For this purpose, the default probability values
of Fin and Fout, 0.05 and 0.10, respectively, were adopted. Using
the calibration matrix, two MLR models were constructed,
both with and without the inclusion of an independent term
(constant). The model including the constant gave lower linearity
than the model without the constant (regression coefficient, r,
of 0.961). For this reason, further studies were performed
without the inclusion of the constant. The correlation plot of
the calculated versus the experimental OFA percentages is
shown in Figure 4A. When leave-one-out validation was applied,
the average prediction error (calculated as the sum of the absolute
differences between expected and calculated OFA concentra-
tions divided by the number of predictions) was 30%. To obtain
information regarding the fit of the model, residual values
and/or the relative errors were examined. For this purpose, a
plot representing the residual values against the experimental
OFA percentages (Figure 4B) was obtained. A dependence of
the residuals on the experimental values was observed and,
therefore, heteroscedasticity (nonconstant variance) of the
data. For this reason, the following variable transformations (26)
were applied to the experimental OFA percentages: natural
logarithm and square and cube roots. Homoscedasticity in
the data distribution was obtained when the cube root transfor-
mation was used (see Figure 5B). Comparison of this plot with
that in Figure 4B shows that homoscedasticity of the data

Figure 2. OFA HPLC traces of VOOs at (A) 2 weeks, (B) 16 months, and
(C) 34 months after oil production. Detection was performed at 255 nm.
Peak identification (as benzyl ester derivatives): 1, group of isomeric forms
of ketolinolenic acid; 2, group of isomeric forms of ketolinoleic acid; 3, group
of isomeric forms of keto-oleic acid. IS1 and IS2 are benzyl caproate and
benzyl heptadecanoate, respectively.

Figure 3. Plots representing the OFA values of the 72 VOOs employed in
this study: (A) OFA < 1.0%; (B) 1.0%e OFA < 2.5%; (C) 2.5%e OFA <
4%; (D) OFAg 4%. The first group (n = 23) shows a mean of 0.6%; the
second group (n = 15), a mean of 1.8%; the third group (n = 23), a mean of
3.0%, and the fourth group (n = 11), a mean of 5.3%.

Figure 4. (A) Correlation plot of the calculated versus the experimental
OFA percentages. (B) Plot of the residual values versus the experimental
OFA percentages.
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was observed. Using cube root transformation, an r of 0.995
was obtained with a squared correlation coefficient of 0.989.
The correlation plot of the calculated versus the experi-
mental OFA percentages obtained using the cube root transfor-
mation is shown in Figure 5A. The predictors selected for this
model and their corresponding nonstandardized coefficients
and confidence limits are detailed in Table 1. According to
this table, the sensors selected corresponded to sensors 2-6,
which corresponded to SnO2 þ SiO2, SnO2 catalyzed with three
different metals, and WO3. When leave-one-out validation
was applied, the average prediction error was 8%. When the
model was applied to the validation set, a good prediction
capability was observed (see Figure 4A), the average validation
error being 9%.

Thus, the possibility of estimating the oxidative status of
VOO using OFA concentration as reference by means of electro-
nic nose data has been demonstrated. After a cube root transfor-
mation of the experimental OFA percentages, an MLR model
constructed using five predictors was able to predict OFA
concentrationwith an average error of 9%. Thismethod is useful,
particularly considering the accordance with HPLC, the rapidity
of analysis, and the lack of solvent consumption. This latter
point should be taken into account considering the real problem
of ACN shortage, which is the most widely solvent used in
HPLC analysis.

ACKNOWLEDGMENT

We gratefully acknowledge Sacmi Imola S.C., who kindly
allowed us to use the MOS 340 system (EOS 507), and Ibanez
Ricc�o for technical assistance.

LITERATURE CITED

(1) Toschi, T. G.; Costa, A.; Lercker, G. Gas chromatographic study
on high-temperature thermal degradation products of methyl
linoleate hydroperoxides. J. Am. Oil Chem. Soc. 1997, 74, 387–391.

(2) Bendini, A.; Cerretani, L.; Vecchi, S.; Carrasco-Pancorbo, A.;
Lercker, G. Protective effects of extra virgin olive oil phenolics on
oxidative stability in the presence or absence of copper ions. J. Agric.
Food Chem. 2006, 54, 4880–4887.

(3) Choe, E.; Min, D. B. Mechanisms and factors for edible oil
oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186.

(4) Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; G�omez-Caravaca,
A. M.; Segura-Carretero, A.; Fern�andez-Guti�errez, A.; Lercker, G.
Phenolic molecules in virgin olive oils: a survey of their sen-
sory properties, health effects, antioxidant activity and analytical
methods. An overview of the last decade. Molecules 2007, 12, 1679–
1719.

(5) Al-Ismail, K.; Caboni, M. F.; Lercker, G. The influence of oxygen
availability on the extent of oxidation of some lipid model system.
Riv. Ital. Sostanze Grasse 1998, 75, 175–180.

(6) Al-Ismail, K.; Caboni,M. F.; Rodrı́guez-Estrada,M. T.; Lercker, G.
The influence of oxygen content on the extent of oxidation of model
systems of mixtures of methyl oleate andmethyl linoleate at different
ratios. Grasas Aceites 1999, 50, 448–453.

(7) Farhoosh, R.; Pazhouhanmehr, S. Relative contribution of compo-
sitional parameters to the primary and secondary oxidation of
canola oil. Food Chem. 2009, 114, 1002–1006.

(8) Frankel, E. N. Chemistry of autoxidation: mechanism, products
and flavor significance. In Flavor Chemistry of Fats and Oils;
Min, D. B., Smouse, T. H., Eds.; AOCS Press: Champaign, IL, 1998;
pp 1-37.

(9) Vichi, S.; Pizzale, L.; Conte, L. S.; Buxaderas, S.; L�opez-Tamames,
E. Solid-phase microextraction in the analysis of virgin olive oil
volatile fraction: Modifications induced by oxidation and suitable
markers of oxidative status. J. Agric. Food Chem. 2003, 51, 6564–
6571.

(10) Melton, S. L.; Jafra, S.; Sykes, D.; Trigiano, M. K. Review of
stability measurements for frying oils and frying food flavour. J. Am.
Oil Chem. Soc. 1994, 71, 1301–1308.

(11) ISO, International Organization for Standardization. Animal and
vegetable fats and oils;determination of content of polar compounds
(ISO 8420:2002); pp 1-18.

(12) Rovellini, P.; Cortesi, N.; Fedeli, E. Oxidative profile and chemical
structure of oxidation products of triglycerides by HPLC-ES-MS.
Riv. Ital. Sostanze Grasse 1998, 75, 57–70.

(13) Armaforte, E.; Mancebo-Campos, V.; Bendini, A.; Salvador, M. D.;
Fregapane, G.; Cerretani, L. Retention effects of oxidized polyphe-
nols during analytical extraction of phenolic compounds of virgin
olive oil. J. Sep. Sci. 2007, 30, 2401–2406.

(14) Rovellini, P.; Cortesi, N. Oxidative status of extra virgin olive oils:
HPLC evaluation. Ital. J. Food Sci. 2004, 16, 333–342.

(15) Escuderos, M. E.; Uceda, M.; S�anchez, S.; Jim�enez, A. Instrumental
technique evolution for olive oil sensory analysis. Eur. J. Lipid Sci.
Technol. 2007, 109, 536–546.

(16) Esposto, S.;Montedoro,G. F.; Selvaggini, R.; Ricc�o, I.; Taticchi, A.;
Urbani, S.; Servili, M. Monitoring of virgin olive oil volatile
compounds evolution during olive malaxation by an array of metal
oxide sensors. Food Chem. 2009, 113, 345–350.

(17) Aparicio, R.; Rocha, S. M.; Delgadillo, I.; Morales, M. T. Detection
of rancid defect in virgin olive oil by the electronic nose. J. Agric.
Food Chem. 2000, 48, 853–860.

(18) Camurati, F.; Tagliabue, S.; Bresciani, A.; Sberveglieri, G.; Zaga-
nelli, P. Sensory analysis of virgin olive oil by means of organoleptic
evaluation and electronic olfactory system.Riv. Ital. Sostanze Grasse
2006, 83, 205–211.

(19) Garcı́a-Gonz�alez, D. L.; Aparicio, R. Detection of vinegary defect in
virgin olive oils by metal oxide sensors. J. Agric. Food Chem. 2002,
50, 1809–1814.

(20) Garcı́a-Gonz�alez, D. L.; Aparicio, R. Virgin olive oil quality
classification combining neural network and MOS sensors. J. Agric.
Food Chem. 2003, 51, 3515–3519.

(21) Lerma-Garcı́a,M. J.; Sim�o-Alfonso, E. F.; Bendini, A.; Cerretani, L.
Metal oxide semiconductor sensors for monitoring of oxida-
tive status evolution and sensory analysis of virgin olive oils
with different phenolic content. Food Chem. 2009, 117, 608-
614.

Figure 5. (A) Correlation plot of the calculated versus the experimental
OFA percentages obtained after cube root transformation. (B) Plot of the
residual values versus the experimental OFA percentages obtained after
cube root transformation. For both A and B, samples are marked as
calibration (O) and validation (þ).

Table 1. Predictors Selected and Their Corresponding Nonstandardized
Coefficients and Confidence Limits for the MLR Model Constructed with the
Cube Root Transformation

predictor coeff confidence limitsa

sensor 2 3.18 2.42, 3.94

sensor 3 10.12 7.67, 12.57

sensor 4 -8.61 -10.63,-6.58

sensor 5 -7.98 -10.12, -5.84

sensor 6 6.16 4.63, 7.69

a For a 95% confidence interval.



Article J. Agric. Food Chem., Vol. 57, No. 20, 2009 9369

(22) Tena, N.; Lazzez, A.; Aparicio-Ruiz, R.; Garcı́a-Gonz�alez, D. L.
Volatile compounds characterizing Tunisian Chemlali and Ch�etoui
virgin olive oils. J. Agric. Food Chem. 2007, 55, 7852–7858.

(23) Buratti, S.; Benedetti, S.; Cosio, M. S. An electronic nose to evaluate
olive oil oxidation during storage. Ital. J. Food Sci. 2005, 2, 203–210.

(24) Cosio, M. S.; Ballabio, D.; Benedetti, S.; Gigliotti, C. Evaluation of
different storage conditions of extra virgin olive oils with an
innovative recognition tool built by means of electronic nose and
electronic tongue. Food Chem. 2007, 101, 485–491.

(25) Norme Grassi e Derivati (NGD). Stazione Sperimentali degli Oli e
dei Grassi, Milano, Italy, Method NGD C-88, 2007.

(26) Vandeginste, B. G. M.; Massart, D. L.; Buydens, L. M. C.; De Jong,
S.; Lewi, P. J.; Smeyers-Verbeke, J. Data Handling in Science and
Technology Part B; Elsevier Science: Amsterdam, The Netherlands,
1998.

Received May 25, 2009. Revised manuscript received August 3, 2009.

Accepted September 22, 2009. Project CTQ2007-61445 (MEC and

FEDER funds) is acknowledged. M.J.L.-G. thanks the Generalitat

Valenciana for an FPI grant for Ph.D. studies and for a grant to study

in a foreign institution.


